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Abstract
1.	 Ecological processes are rarely directly observable, and inference often relies on 

estimating hidden or latent processes. State-space models have become widely 
used for this task because of their ability to simultaneously estimate the multiple 
sources of variation (natural variability and variance attributed to observation 
errors). For multivariate time series, a second aim is often dimension reduction, 
or estimating a number of latent processes that are smaller than the number of 
observed time series. Dynamic factor analysis (DFA) has been used for perform-
ing time-series dimension reduction, where latent processes are modelled as 
random walks. Whereas this may be suitable for some situations, random walks 
may be too flexible for other cases.

2.	 Here, we introduce a new class of models, where latent processes are modelled 
as smooth functions (basis splines, penalized splines or Gaussian process mod-
els). We implement these models in our bayesdfa r package, which uses the rstan 
package for fitting. After evaluating model performance with simulated data, we 
apply conventional models and our smooth trend models to two long-term data-
sets from the west coast of the United States: (a) a 35-year dataset of pelagic 
juvenile rockfishes and (b) a 39-year dataset of fisheries catches.

3.	 Our simulations demonstrate that models matching the underlying trend 
smoothness make better out-of-sample predictions, but this advantage dimin-
ishes with increasing levels of observation error. For both case studies, the best 
smooth trend models had higher predictive accuracy, and yielded more precise 
predictions, compared to the conventional approach.

4.	 The smooth trend factor models introduced here offer a new approach for state-
space dimension reduction of multivariate time series. These flexible Bayesian 
models may be particularly useful for data that are clumped in time, for data with 
high signal to noise ratios and generally for data where the underlying trend is 
assumed to be relatively smooth.
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1  |  INTRODUC TION

Ecological data can be characterized by multiple sources of vari-
ability, including stochastic natural variation, and errors associated 
with data collection (observation, sampling and measurement er-
rors). Disentangling these sources of variability is often challenging 
and necessitates the use of statistical methods, such as state-space 
models. These approaches have become ubiquitous in ecology, 
particularly for time-series data (Auger-Méthé et  al.,  2021)—in 
part because these models allow researchers to make infer-
ences about ecological processes that are not directly observ-
able. Applications of these models include estimating population 
change over time (Clark & Bjørnstad, 2004), movement dynamics 
(Patterson et al., 2008) and understanding spatio-temporal varia-
tion (Anderson & Ward, 2019).

Estimating the multiple sources of variation in state-space models 
is numerically complex and can be constrained explicitly or implicitly 
in ecological models via model assumptions. For example, discrete 
time state-space models of population trajectories generally assume 
latent population size nt at time t can be approximated by an autore-
gressive process in log-space, xt+1 = f(xt) + �t, where f() represents 
some function, xt = log(nt) and �t are normally distributed process 
deviations representing stochastic variability of the natural system 
(Dennis et  al.,  2006). Without the autoregressive constraint, the 
variance of the stochastic noise �t is not estimable in the presence of 
an observation or data model. Separating these sources of variability 
is critical to generate the unbiased estimates of population trends or 
density dependence (Knape, 2008). If inference is not dependent on 
the parameters of ecological interest (e.g. growth rates, density de-
pendence), a wide range of alternative semi-parametric approaches 
exist that can be used to model the trajectory of xt, including gen-
eralized additive models (GAMs, Wood, 2011) and Gaussian process 
models (Roberts et al., 2013). Because these models are not autore-
gressive with discrete time steps, the flexibility or ‘wiggliness’ of the 
model can be adjusted as part of the model fitting. In addition to 
their flexibility, these semi-parametric models may be better suited 
for situations when data are patchily distributed in time or unequally 
spaced, making estimation of process and observation errors more 
difficult.

Challenges posed by univariate time-series models also apply to 
multivariate models, with the additional complexity that the number 
of latent time series may be variable, k = 1, …, m, where m is the num-
ber of time series observed. At one extreme, k = m, and each time 
series corresponds to a unique latent process. Motivating questions 
in analysing these models include estimating correlated latent pro-
cesses or trends, or estimating effects of environmental covariates 
(Hovel et al., 2017). At the other extreme, k = 1, where each time 
series represents repeated measurements of the same process, with 
optional offsets included for each time series (e.g. offsets allowing 
for differing detectability). Applications focused on estimating a sin-
gle trend from multivariate data include the development of ecolog-
ical indicators. Models with intermediate numbers of latent states 
1 < k < m require mapping of time series to latent trends. These may 

be specified a priori (Ward et al., 2010) or estimated within the mod-
elling framework using dimension reduction techniques.

Many statistical approaches have been proposed in recent years 
for clustering or estimating common signals in multivariate time se-
ries (Liao, 2005). Examples include clustering based on similarities 
among time-series features (Sardá-Espinosa, 2019), identifying com-
mon patterns in the frequency domain (Holan & Ravishanker, 2018) 
and clustering based on neural networks (Cherif et  al.,  2011). 
Application of these methods to ecological data has been limited, 
in part because many of these approaches identify clusters from 
raw data and ignore observation error. An alternative approach that 
has been used in ecology to map the collections of multivariate time 
series to latent processes, while accounting for observation error, 
is dynamic factor analysis (DFA) (Zuur, Fryer, et  al.,  2003; Zuur, 
Tuck, et al., 2003). DFA is an extension of factor analysis for time-
series data, and estimates a small number of unobserved processes 
(‘trends’), that can describe observed data. Mapping of time series to 
trends is done via estimated factor loadings—these allow each time 
series to be modelled as a mixture of estimated latent trends, rather 
than assigning each time series to a single trend.

To date, applications of DFA models in ecology and other fields 
have assumed that underlying trends are modelled as a random 
walk, xt+1 = xt + �t. The objective of this paper is to introduce a 
new class of DFA models based on smooth functions, instead of 
autoregressive processes. Recent work has highlighted the appli-
cation of hierarchical GAMs for multiple data sources (Pedersen 
et al., 2019). These approaches are flexible and likely to provide 
similar inference to DFA for a single latent trend; however, these 
methods have not been extended to include more than one pro-
cess. We illustrate two options for modelling smooth functions 
for latent trends: splines (‘B-splines’ or penalized ‘P-splines’) and 
Gaussian process models. We compare both approaches to con-
ventional autoregressive DFA models using simulated data and, as 
real-world applications, using two marine fish datasets from the 
west coast of the United States. All data and code for replicating 
our analysis are available on Github (https://github.com/fate-ewi/
gpdfa) and Zenodo (Ward & Anderson, 2021), and in our existing r 
package ‘bayesdfa’ (Ward et al., 2019).

2  |  MATERIAL S AND METHODS

2.1  |  Dynamic factor model

The basic DFA model can be written as a multivariate state-space 
model, consisting of a latent process model and observation or 
data model. The process model for a DFA with k trends is ex-
pressed as a random walk, xt+1 = xt +wt, where xt is a k-element 
vector and wt ~ MVN(0, Q). For identifiability constraints, the co-
variance matrix Q is generally constrained to be an identity matrix 
(Holmes et al., 2012; Zuur, Tuck, et al., 2003). Additional features 
may be incorporated into the process model including autore-
gressive or moving average coefficients, covariates or deviations 
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that are more extreme than that of the normal distribution (Ward 
et  al.,  2019). The observation model in a DFA is expressed as a 
linear combination of trends xt and a matrix of loadings coeffi-
cients Z, yt = Zxt + Bdt + et  . In addition to the trends and loadings, 
time-varying covariates dt may be optionally included and linked 
to the observations through estimated coefficients B. The vector 
et represents residual observation error, which is typically mod-
elled as a diagonal matrix, et ~ MVN(0, R), although off-diagonal 
elements may be estimated (Holmes et al., 2020). Further details 
of the Bayesian implementation of the DFA model and extensions 
are provided in Ward et al. (2019).

2.2  |  Modelling trends as Gaussian processes

Conventional DFA models with trends modelled as random walks 
are flexible, but for some datasets, these models may be inappro-
priate. If data generating processes are not well approximated by a 
random walk, other models may be more suitable. As a first alter-
native to the random walk model, we treat the trends as a Gaussian 
process (Roberts et  al.,  2013). A discrete time Gaussian process 
model of trends treats the vector representing the kth trend as a 
stochastic process, where xk is drawn from a multivariate normal 
distribution. As data in a DFA are generally standardized (mean 0, 
standard deviation 1), we can assume the mean of each trend to be 
0, and all inference about the Gaussian process centres around the 
covariance matrix, xk ∼ MVN(0,�). Rather than estimate each ele-
ment of � independently, smooth covariance functions or ‘kernels’ 
are chosen to represent the covariance between points in time 
(typical choices include the exponential, Gaussian and Matérn 
functions). For the purpose of our DFA modelling, we adopt a 
Gaussian kernel so that the covariance between points i and j at 
times ti and tj on trend k can be expressed as 

cov
(

xi,k , xj,k
)

= �2
k
exp

(

− (ti−tj)
2

2�2
k

)

, where σk controls the magnitude 

of variation, and θk controls how smoothly correlation decreases 
as time points become further apart. We allow each trend to have 
its own covariance parameters (θk, σk), allowing each to have dif-
fering degrees of smoothness. Because of potential computation 
issues in high dimensionality problems such as spatial models 
(Anderson & Ward, 2019; Latimer et al., 2009), we also allow this 
Gaussian process model to be expressed as a Gaussian predictive 
process model. The difference between the predictive process ap-
proach and the full Gaussian process model is that instead of mod-
elling the xt themselves as random variables, random variables are 
modelled at a subset of locations x∗

k
 (referred to as ‘knots’) and 

projected to the locations of the data xk. If we assume 
x∗
k
∼ MVN(0,�∗), then this projection can be done as xk = Σ�

k,k∗�
∗−1

x∗
k

, where the matrix Σ�
k,k∗ is the transpose of the matrix describing 

the covariance between xk and x∗
k
. The location of k* can be spaced 

equally or depend on data; we assume that the k* are equally 
spaced within each time series (with the endpoints also acting as 
knots).

2.3  |  Modelling trends as splines

As an alternative model of latent trends in a DFA, we use a se-
ries of smoothing functions, known as basis splines (‘B-splines’), or 
penalized basis splines (‘P-splines’). These models can be thought 
of as a special case of Gaussian process models (Kimeldorf & 
Wahba, 1970) and offer flexibility similar to the more familiar gen-
eralized additive models (Wood,  2011). Splines are represented 
as a series of piecewise polynomial functions, where higher order 
polynomials result in more flexible curves (Hastie, 1992). A com-
mon choice of the order of these polynomials is a cubic or third 
degree, and will be the focus of our implementation for DFA. An 
additional input to splines is the locations of the control points 
(knots) between polynomial segments—more knots translate into 
a more flexible function, but also one with more parameters to es-
timate. We assume knots to be uniformly distributed over the time 
series. Uniform knot vectors may be appropriate for data collected 
at regular intervals, but for observations more patchily distributed 
in time, defining knots based on quantiles or other metrics may 
be warranted. Mathematically, modelling the trends in a DFA with 
B-splines can be expressed as a linear combination of the recur-
sive B-spline weights B and estimated coefficients a, xk = aB. The 
matrix B is generated from the raw data prior to estimation (R Core 
Team,  2020). In the DFA setting, B is shared across trends, but 
for trend-specific variability, we allow the coefficients a to have a 
trend-specific variance, ak ∼ Normal

(

0, �2
k

)

. P-splines represent an 
extension of B-splines, with an added penalty for extra wiggliness 
(Crainiceanu et al., 2005; Eilers & Marx, 1996); this penalty reduces 
the impact of the number of B-spline basis functions on model fit 
(Wood, 2017). For our implementation in bayesdfa, we use a linear 
penalty with second-order difference (Eilers & Marx, 1996).

2.4  |  Simulations to compare model performance

To examine the relative performance of our proposed smooth 
trend models versus conventional approaches, we conducted a 
series of simulations to investigate sensitivity to (a) departures 
from random walks and (b) magnitude of observation error vari-
ance. We generated sets of simulated data consisting of 20 time 
steps and three time series. Each dataset was assumed to be gen-
erated from a single trend, which we modelled either as a ran-
dom walk or as a smooth trend with a B-spline. Observed time 
series were generated from these trends by multiplying random 
loadings Zi ∼ Normal

(

1, 0. 12
)

 and then adding observation error 
(we used three levels of the observation error standard deviation: 
σobs  =  0.25, 0.5, 1). Each set of simulated time series was then 
fit with the same estimation models: a conventional DFA model 
estimating the trend as a random walk, smooth trends approxi-
mated with a B-spline (7, 13 and 20 knots), a P-spline (13 knots) 
and a full-rank Gaussian process (20 knots). For each combination 
of trend model and observation error, we generated a total of 100 
simulated datasets.
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Estimation was done in a Bayesian framework using our bayesdfa r 
package (Ward et al., 2019). For the spline models, we assigned priors 
on the weights a ∼ Normal (0, 1). Similarly, we assigned standard half-
normal priors for the Gaussian process variances �k ∼ Normal (0, 1), 
and inverse Gamma priors for the scale �k ∼ IG (3, 1). Bayesian esti-
mation in the bayesdfa package is done using Stan and the r package 
rstan (Stan Development Team,  2016), which implements Markov 
chain Monte Carlo (MCMC) using the No-U Turn Sampling (NUTS) 
algorithm (Carpenter et  al.,  2017; Hoffman & Gelman,  2014). The 
relative performance of each estimation model was done using out-
of-sample predictive ability. For each of the simulated time series 
described above, we randomly held out 10% (two of every 20 ob-
servations) as a test set. Because of the large number of models 
(600 simulated datasets, 4,200 estimation models), we only ran one 
MCMC chain (3,000 iterations, discarding the first half as warm up) 
and generated posterior predictions for the test data. The normal log 
density of the test set was calculated for each MCMC iteration, and 
the expected log pointwise predictive density (ELPD) was used to 
summarize these values across draws (Vehtari et al., 2017).

2.5  |  Application: one-trend models of juvenile 
fish dynamics

As a first application of smooth DFA models, we analysed time-series 
data of pelagic juvenile rockfishes collected in Southern California 
(USA). The California Cooperative Oceanic Fisheries Investigations 
(CalCOFI) programme has been conducting quarterly research 
vessel surveys to collect physical and biological data since 1949, 
to monitor changes to the California Current Ecosystem (Bograd 
et al., 2003). The CalCOFI data have been incorporated into mod-
els used to assess population status (MacCall, 2003), and numerous 
publications have used these time series as indicators of ecosystem 
state (McClatchie et al., 2008). These types of motivating questions 
also present an opportunity to apply DFA with both conventional 
and smoothed trends to generate ecosystem state indices. For this 
application, we focused on the dynamics of three co-occurring 

species of juvenile rockfishes: aurora rockfish Sebastes aurora, short-
belly rockfish S. jordani and bocaccio rockfish S. paucispinis. We re-
stricted the time series to data collected since 1985, when sampling 
has been consistent in space and time on fixed sampling lines (Moser 
et  al.,  2001). Although CalCOFI cruises are done throughout the 
year, we were primarily interested in estimating interannual trends, 
and further restricted our analysis to considering spring cruises from 
1 April to 22 May when densities of most rockfish species are high-
est (Mosek et al., 2000). All data were retrieved using the software 
R (R Core Team, 2020) and the rerddap package (Chamberlain, 2020).

With only three time series, we focused on DFA models with 
one trend and a single observation error variance shared across spe-
cies. Other types of models, including hierarchical GAMs (Pedersen 
et al., 2019) or models allowing estimated offsets, may also be useful 
in this type of application. Where the DFA model differs is that un-
like models with random intercepts or additive terms, the DFA factor 
loadings Z are multiplicative and may be close to zero. These cases 
may arise when a particular time series has a low signal to noise ratio, 
or if there is low correspondence with the latent trends estimated 
among all other time series. In addition to estimating a conventional 
one-trend DFA model with a latent autoregressive process, we eval-
uated smooth one-trend models (trend estimated with a B-spline, P-
spline or Gaussian process). Because we had no a priori hypotheses 
about the complexity of these smoothed factor models, we evalu-
ated a range of models for each (Table 1), using equally spaced knots.

2.6  |  Application: two-trend models of commercial 
fisheries catches

As a slightly more complex example of the smooth factor analysis 
model, we examined the performance of two-trend models, using 
a dataset of commercial fisheries catches (landings) from the west 
coast of the United States. This dataset consists of 13 species or 
groups reported annually from multiple fisheries over a 39-year pe-
riod (1981–2019) (PFMC, 2020). Landings off the US West Coast are 
dominated by Pacific hake (also Pacific whiting, Merluccius productus), 

Trend model Knots
CalCOFI 
LOOIC

CalCOFI 
ELPD

Landings 
LOOIC

Landings 
ELPD

Random walk NA 2.44 (12.16) 1.22 (6.08) 28.05 (49.21) 14.02 (24.61)

B-spline 6 4.67 (12.45) 2.33 (6.23) 2.14 (54.78) 1.07 (27.39)

B-spline 18 3.3 (12.25) 1.65 (6.12) 22.39 (48.45) 11.19 (24.23)

B-spline 30 0 (12.64) 0 (6.32) 64.32 (46.98) 32.16 (23.49)

P-spline 6 3.22 (12.63) 1.61 (6.32) 9.16 (55.73) 4.58 (27.86)

P-spline 18 3.12 (12.72) 1.56 (6.36) 2.53 (54.93) 1.26 (27.46)

P-spline 30 2.68 (12.5) 1.34 (6.25) 0 (54.63) 0 (27.31)

GP 6 2.54 (12.43) 1.27 (6.21) 3.79 (53.64) 1.89 (26.82)

GP 18 2.72 (12.33) 1.36 (6.17) 6.73 (53.31) 3.36 (26.66)

GP 30 1.56 (12.5) 0.78 (6.25) 7.24 (53.26) 3.62 (26.63)

GP Full rank 0.51 (12.44) 0.26 (6.22) 4.97 (53.42) 2.49 (26.71)

TA B L E  1  Leave One Out Information 
Criterion (LOOIC) and Expected Log 
Posterior Density (ELPD) with standard 
errors in parentheses for each of the 
models applied to our case studies 
(CalCOFI time series of juvenile 
rockfishes, and the time series of 
commercial groundfish landings from 
the west coast of the United States). For 
each model, knots (or locations of control 
points) are assumed to be uniformly 
spaced over the time series. To aid in 
interpretation, the minimum LOOIC value 
has been subtracted from each case study 
and ELPD values have been subtracted 
from the maximum (0 for each metric 
reflects the most supported model)
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but also include substantial catches of rockfishes (Sebastes spp.) and 
flatfishes (e.g. Dover sole, Solea solea). Over the course of the last 
four decades, these species have experienced variability associated 
with population dynamics and the environment, but the patterns 
of landings also reflect a dynamic fisheries management process. 
Examples of changes include temporarily closing areas to fishing to 
protect species of conservation concern, and implementing catch 
share programmes. These processes, combined with environmental 
conditions that have been positive for many species, have resulted 
in many increasing populations (Warlick et  al.,  2018). Given these 
various management and ecological changes, it is important to sum-
marize the patterns of landings, and identify common trends as indi-
cators for management and ecosystem status (Harvey et al., 2018).

As with our previous example, we compared conventional 
DFA models to those modelling the trends with smooth functions. 
Preliminary model comparisons with one-trend models suggested 
that two-trend models were most supported by the data, and 
thus will be the focus of our analysis. In addition to modelling the 
two-trend model with conventional DFA, we evaluated spline and 
Gaussian process models with equally spaced knots (Table  1). All 
models included a single observation error variance, shared across 
time series.

2.7  |  Estimation and model selection

For each model considered in our applications, we ran three parallel 
MCMC chains for 4,000 iterations each, discarding the first 50% of 
the samples. We assessed convergence using split-R and effective 
sample size (Gelman et al., 2013) along with trace plots. We used the 
loo package to calculate the approximate ELPD (Vehtari et al., 2017), 
and the Leave One Out Information Criterion (LOOIC, Vehtari 
et  al.,  2017, 2020) as a model selection tool (Ward et  al.,  2019), 
which approximates leave-one-out cross-validation. Preliminary 
model checks using LOOIC for the models included in our analysis 
indicated that many models had one to four data points that had 
high Pareto-k statistics (possibly because of model misspecification 
or model flexibility, Vehtari et  al.  (2017)). To avoid refitting these 
models, we implemented moment matching in the loo package 
(Paananen et al., 2021; Vehtari et al., 2020).

3  |  RESULTS

3.1  |  Simulations to compare model performance

Our simulations were designed to explore the relative performance 
of DFA models that estimate trends as random walks versus our 
proposed smooth trends, when trends depart from random walks 
and are corrupted by observation error. Our results suggested that 
when observation error is relatively high, there is little difference 
between the smooth trend and random walk DFA models (Figure 1). 
As observation error decreases, ELPD favours smooth trend models 

when the underlying trend is smooth and random walk models when 
the underlying trend is random walk (Figure  1). The largest ELPD 
weight for the smooth trend model occurred when observation error 
was low (0.25) and the number of knots in the estimation model was 
closest to that of the simulation model (‘BS7’ Figure 1 left panel). The 
P-spline and Gaussian process models provided weak support to the 
true data generating model with low observation error, but mod-
els were indistinguishable with higher levels of observation errors. 
Results across knots for the B-spline estimation model demonstrate 
that flexibility increases as more knots are added, and the smooth 
trend approach becomes similar to the random walk (Figure 1 left 
panel).

3.2  |  Application: one-trend models of juvenile 
fish dynamics

For our application of smooth dynamic factor models to the CalCOFI 
juvenile rockfish dataset, we found that the full-rank Gaussian pro-
cess DFA model and B-spline model with 30 knots had slightly lower 
LOOIC values compared to alternative models (Table 1), and these 
high-dimensional models performed slightly better than the con-
ventional DFA model. Varying the number of knots for the P-spline 
models and Gaussian process models resulted in qualitatively similar 
data support (Table 1), while the predictive accuracy of the B-spline 
model increased with more knots. This greater flexibility allowed 
more complex models to better capture recent variability in rockfish 
densities (Figure 2). Trend 1 can be seen as largely capturing the vari-
ability in the time series of aurora rockfish, which had the loading 
that was largest in magnitude (−0.11, 90% credible interval = −1.21–
1.09). Bocaccio rockfish also loaded positively on trend 1, though 
the effect was weaker (−0.14, 90% credible interval = −1.36–1.36). 
The loading for shortbelly rockfish was smallest in magnitude (−0.07, 
90% credible interval = −0.96–0.97).

3.3  |  Application: two-trend models of commercial 
fisheries catches

When DFA models were applied to commercial fisheries landings 
data from the west coast of the United States, the model with the 
lowest LOOIC was the P-spline model with 30 knots (second was 
the B-spline model with six knots). The first trend exhibited nearly 
linear change from 1981 to 2001 and was relatively stationary from 
2001 to 2019 (Figure 3). The second trend represented change from 
the early 1990s, with the strongest change occurring 2010–present. 
Estimates of the loadings from the best model indicated many spe-
cies or species groups loaded negatively on trend 1 (lingcod, sable-
fish, rockfishes), but arrowtooth flounder and Pacific whiting had 
opposite loadings (Figure 3). Trend 2 from this model appeared to 
contrast species with relatively stationary catches before declining 
in 2010 (e.g. arrowtooth flounder, Atheresthes stomas) versus Petrale 
sole Eopsetta jordani—one of the only non-whiting species that has 
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experienced positive catches since 2010. Predictions across all mod-
els appeared to characterize the trends of most species, and trends 
from the best model generated more precise predictions relative to 
the random walk (Figure 4), although neither model was able to cap-
ture the variability in Pacific whiting catches since 2000.

While low-dimensional Gaussian process and spline models per-
formed similarly (Table 1), comparing higher order models demon-
strates the contrast between approaches. As more knots were 
added to spline models, the wiggliness of the estimated trends gen-
erally increased for the B-spline models but remained smooth for 
the P-spline approach (Figure  5). Like the P-spline models, trends 
from the Gaussian process models did not become more wiggly as 
more knots were added, though the credible intervals of estimated 
trends were wider than either of the spline approaches (Figure 5). 
Estimates of θk for this Gaussian process model were relatively large 
(8.13, 4.78), allowing correlation between neighbouring points to de-
crease slowly and neighbouring points further away to have a larger 
effect. In contrast, the full-rank Gaussian process model was most 
supported for the CalCOFI data—this model had a relatively small 

value of θk = 1.15, allowing correlation between adjacent points to 
decrease rapidly, translating into greater flexibility.

4  |  DISCUSSION

Dynamic factor analysis represents a flexible approach for using 
state-space models to capture latent processes in multivariate 
time series (Zuur, Fryer, et  al.,  2003; Zuur, Tuck, et  al.,  2003). For 
some ecological processes—particularly those with high variability—
random walks may be too constraining, while for others, using a ran-
dom walk may be overly complex. Examples of cases where random 
walks may overfit trends may exist when there are large temporal 
gaps between observations, or data are collected from systems 
with high signal to noise ratios. As alternatives to the conventional 
random walk, we illustrate how DFA trends may be modelled using 
Gaussian process models smooth functions (B-splines, P-splines). 
The smoothness of spline approaches may be specified a priori by 
the user, and compared via model selection. As the variability of 

F I G U R E  1  Simulation results, showing the difference in expected log pointwise predictive density (ELPD) between each model and 
the conventional dynamic factor analysis model with trends estimated as random walks. Data were generated from either a B-spline with 
seven knots or a random walk, and three levels of observation error were explored (0.25, 0.5, 1). Results are shown for each combination of 
observation error and estimation model (B-spline with 7, 13 or 20 knots; P-spline with 13 knots; Gaussian process with 20 knots, random 
walk). Each boxplot corresponds to 100 ELPD point estimates, and each facet represents a different data generating model (B-spline or 
random walk)

σ
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latent trends is nearly always fixed in a conventional DFA for iden-
tifiability (Holmes et al., 2012; Zuur, Tuck, et al., 2003), adopting an 
alternative model of the trend does not limit inference or change the 
meaning of other parameters (e.g. loadings). Based on our applica-
tion of these approaches to simulated data, smooth trend DFA mod-
els may be better supported in situations where the data generating 
process is more smooth than a random walk; examples included 
processes that are highly autocorrelated or have large amounts of 
environmental forcing.

In both of our case studies, comparing smooth DFA models to 
conventional ones, we found that using smooth functions to model 
DFA trends resulted in models with higher predictive ability (as mea-
sured with LOOIC). Our two case studies contrast two datasets with 
different degrees of variability. The CalCOFI dataset on juvenile 
rockfish abundance represents data with relatively high variability—
both because of the sampling process, and because the nature of 
fish recruitment in space and time is stochastic. Our second example 
consisted of applying DFA models to time series of fisheries catches; 
these data are generally less variable than the CalCOFI data because 
catches are aggregated across a large spatial area and individual ves-
sels. Like the CalCOFI example, we found that smooth trend DFA 
models were better supported over the conventional random walk; 
however, the models receiving the most support were lower dimen-
sion models (e.g. P-spline with 30 knots, B-spline with 6 knots). For 
both of our case studies, knot locations were assigned uniformly, 
and these results would be expected to change slightly if the knot 

locations were adjusted. For models with missing data, or datasets 
with unevenly distributed replicate samples, it may be important to 
consider non-uniform knot locations.

Our case studies also highlighted that predictions from smooth 
trend models that use splines or Gaussian processes may be nearly 
identical, raising the question of which approach may be better to 
use in practice. Spline models can give equivalent predictions to 
Gaussian process models with the same kernel used in our models 
(Kimeldorf & Wahba,  1970); however, the smoothing approaches 
differ slightly between these models. Analysts using these methods 
with DFA may be more interested in applying the Gaussian process 
model if inference about covariance parameters is of interest, while 
the B-spline or P-spline models may be computationally faster in 
many other applications. P-splines offer the additional advantage of 
being less sensitive to the number of knots.

Because of their flexibility, applications of LOOIC or related 
model selection tools to state-space models, including the DFA 
models in our analysis, may result in poor diagnostics (e.g. high 
Pareto-k statistics). Alternative approaches for evaluating predictive 
performance may be used, including the ELPD obtained via k-fold 
cross-validation (Vehtari et al., 2017, 2020). Rather than performing 
parameter estimation once per model, as was done in our analysis 
using the loo package, calculating ELPD is more computationally 
challenging because with cross-validation, a model must be fit once 
per fold. Re-fitting the model multiple times also allows alternative 
cross-validation methods to be more easily applied. Commonly used 

F I G U R E  2  Standardized densities 
of juvenile shortbelly rockfish Sebastes 
jordani collected in the CalCOFI survey, 
and estimates of latent trends for three 
candidate models, representing a range 
of flexibility in splines compared to the 
conventional random walk. In addition to 
the conventional dynamic factor analysis 
model with a latent random walk (included 
in all panels for reference), predictions 
from a full-rank Gaussian process model 
and B-spline model with 12 knots and 
24 knots are shown. The posterior mean 
from each model is shown as a solid line, 
and 90% credible intervals are shown with 
ribbons
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F I G U R E  3  Estimated trends and 
loadings from the two-trend dynamic 
factor analysis model applied to 
commercial groundfish landings off the 
west coast of the United States. The 
model results with lowest Leave One Out 
Information Criterion are shown, a model 
that allows trends to be approximated 
with P-splines (30 knots). The posterior 
mean for each trend is shown, with 
ribbons representing 90% credible 
intervals. The loadings of each species on 
each trend are shown as points, with lines 
representing 90% credible intervals
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F I G U R E  4  Estimated landings for 
two species included in our analysis, 
with contrasting trends (lingcod, Pacific 
whiting). Posterior means and 90% 
credible intervals (ribbons) for two 
candidate models are shown: a P-spline 
trend model with 30 knots, and a random 
walk model representing the conventional 
dynamic factor analysis
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approximations like LOOIC represent an approximation to leave-
one-out cross-validation where each data point is held out in turn. 
An alternative approach for time-series data is that the observa-
tions in each time step can be treated as a fold, and held out in turn. 
Extensions of this time-series approach include leave-future-out 
cross-validation, where data points are only used to predict future 
observations, not historical ones (Bürkner et al., 2020).

There are a number of possible extensions to the smooth func-
tion DFA models described in this paper. One extension would be 
to further constrain the wiggliness defined by the Gaussian process 
rate of correlation decay (θ) via a prior such as the penalized com-
plexity (PC) prior (Simpson et al., 2017). Such a prior which would 
allow one to more easily impart prior beliefs about the parameter 
scale. Second, the smooth trends could themselves be hierarchical: 
The trends could share their wiggliness, draw smoothing parameters 
from a shared distribution or share a global smoother combined with 
group-specific smoothers (Pedersen et al., 2019). DFA represents a 
powerful and underutilized tool for dimension reduction of multivar-
iate time series. Our extensions of conventional methods to imple-
ment smooth trends enhance the flexibility of this tool for estimating 
latent processes, and offer a robust approach for DFA that may also 
be useful in hindcasting or forecasting scenarios.
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